Оперативная память объем статическая и динамическая памяти. Статическая и динамическая оперативная память

ДИНАМИЧЕСКОЕ ОЗУ

Микросхема быстродействующей оперативной памяти ПК, которая отличается

тем, что теряет свое содержимое, если не считывается в течение 2-х миллисекунд.

Микросхемы организованы в виде квадратной матрицы, пересечение каждого столбца и строки которой задает адрес соответствующих элементарных ячеек. Считывание адреса строки происходит, когда на вход матрицы подается импульс строки, а считывание адреса столбца - при подаче импульса столбца. Адреса строки и столбца передаются по специальной мультиплексированной шине адреса MA (Multiplexed Address). Динамическая память выполняется в вариантах синхронном и асинхронном. В последнем случае установка адреса, подача управляющих сигналов и чтение/запись данных

могут выполняться в произвольные моменты времени.

ТИПЫ ДИНАМИЧЕСКИХ ОЗУ

FPU DRAH "Динамическое ОЗУ с быстрым страничным доступом": основной вид видеопамяти, идентичный применяемой в системных платах. Использует асинхронный (произвольный) доступ к ячейкам хранения данных, при котором управляющие сигналы жестко не привязаны к тактовой частоте системы.

EDO DRAH/RAH "ОЗУ с увеличенным временем доступности данных": микросхема динамической памяти, которая отличается от обычных динамических ОЗУ. Техническое обеспечение автоматизированных систем повышенной возможностью работы в так называемом страничном режиме (связанном с сокращением числа тактов при выборке смежных слов текста). В результате этого производительность машины возрастает (примерно на 5%). Используется в качестве основной памяти ПК на базе микропроцессоров Pentium и Pentium Pro, а также в видеокартах при частоте шины 40-50 МГц. Максимальная пропускная способность порядка 105 Мбайт/с.

DDR SDRAM "Синхронное динамическое ОЗУ с удвоенной скоростью передачи данных" или "Расширенное синхронное динамическое ОЗУ" отличается от SDRAH тем, что к последней добавлено небольшое статическое ЗУ, выполняющее функции кэш-памяти. Использование дополнительного кэша позволяет снизить временные задержки и достичь пиковой частоты операций в 200 МГц. Цель такого кэширования хранить данные, к которым происходит частое обращение, и минимизировать обращение к более медленной DRAM. Пропускная способность и скорость работы такой комбинации увеличивается вдвое также за счет того, что при обмене данными между SRAM-кэшем и собственно DRAM может быть

использована шина большей ширины, чем между SRAM-кэшем и контроллером

DRAM. Наибольшую популярность этот вид развивающейся памяти получил при производстве графических ускорителей.

FB-DIMM"Полностью буферизованная память" обеспечивает повышение производительности ОЗУ за счет использования технологии двухканального доступа. Необходимость этого типа памяти возникла в связи с сокращением количества модулей, которые можно посадить на один контроллер северного моста микропроцессора.

VRAH "Видео ОЗУ" или "Видеопамять": быстродействующая оперативная память ЭВМ, являющаяся результатом развития динамических ОЗУ для графической подсистемы ЭВМ и ее мультимедийных приложений. Иногда ее называют также "двухпортовая DRAM". Отличается от обычных схем динамического ОЗУ (DRAH) возможностью одновременного выполнения операций записи и считывания данных за счет наличия двух входов (портов), чем обеспечивается существенное (примерно в два раза) повышение производительности системы. Используется в графических адаптерах. Ее параметры: частота пропускания шины 25-33 МГц, максимальная пропускная способность 120 Мбайт/с. VRAM является одним из наиболее дорогих видов памяти.

Компьютеры используют оперативную память (ОЗУ) для хранения и извлечения информации таким образом, чтобы она была легко и мгновенно доступна. В компьютерах используется два типа оперативной памяти: динамическое ОЗУ (DRAM) и статическая оперативная память (ОЗУ). Каждая из них имеет свои собственные преимущества и недостатки. У SRAM есть преимущество скорости, а DRAM намного дешевле. Большинство компьютеров используют оба типа, но DRAM гораздо более распространена и выполняет большую часть работы.
Чип динамической оперативной памяти содержит миллионы ячеек памяти, каждая состоит из транзистора и конденсатора. Каждая из этих ячеек может содержать 1 бит информации, которая считывается компьютером как 1 или 0. Для определения показаний бита транзистор проверяет наличие заряда в конденсаторе. Если заряд присутствует, то чтение 1; если нет, то чтение 0. Ячейки расположены в квадратной конфигурации, причём строки и столбцы нумеруются в тысячах.

Проблема с динамическим ОЗУ заключается в том, что конденсатор очень быстро теряет энергию и может удерживать заряд всего лишь на долю секунды. Для поддержания заряда в конденсаторе и сохранения информации необходима схема обновления. Этот процесс обновления происходит сотни раз в секунду и требует, чтобы все ячейки были доступны, даже если информация не нужна. Когда считывается каждая строка ячеек, центральный процессор компьютера (ЦП) перезаписывает каждый бит информации, подзаряжая конденсаторы по мере необходимости.

С другой стороны, чипы статической памяти ОЗУ используют другую технологию. Ячейки памяти выполняют резкий поворот между 0 и 1 без использования конденсаторов, что означает, что процесс обновления не требуется, и доступ происходит только тогда, когда требуется информация. Без необходимости постоянного доступа ко всей информации, SRAM намного быстрее, чем DRAM. Вообще говоря, эти чипы намного более энергоэффективны, но это связано только с их ограниченной потребностью в доступе к памяти, а уровень потребления растёт с большим их использованием.

Самым большим недостатком SRAM является пространство. Каждый транзистор в динамическом чипе RAM может хранить один бит информации, и для хранения бита с использованием SRAM требуется от четырех до шести транзисторов. Это означает, что динамический чип RAM будет содержать как минимум в четыре раза больше памяти, чем статический чип RAM того же размера, что делает SRAM намного дороже. DRAM чаще используется для памяти персонального компьютера, а чипы SRAM предпочтительнее, когда проблема энергоэффективности является проблемой, например, в автомобилях, бытовой технике и карманных электронных устройствах.

Динамическая память набирает обороты

Олег Степаненко, Компьютеры + Программы

ЗУ - один из источников машинного "интелекта" - вынуждено постоянно следовать в "кильватерной струе" быстродействия микропроцессора. Баланс производительности между этими центральными элементами системы в последнее время несколько выровнялся и не вызывает уже недоуменного вопроса: а точно ли мы подсчитали такты ожидания?

История динамической памяти с произвольным доступом (DRAM, Dynamic Random Access Memory) - один из примеров отличной проработки удачной идеи, однажды осенившей исследователей.

Как DRAM задерживает работу ПК

Ячейка – базовый элемент памяти

По CMOS технологии, благодаря ее несомненным техническим достоинствам, строятся современные чипы быстродействующих электронных элементов с высокой плотностью упаковки.

Микросхема DRAM содержит множество элементарных ячеек, одна из которых изображена на рис. 1.

Транзистор в динамической ячейке работает как ключ, управляющий передачей заряда. При записи в конденсатор бита информации ключ открывается, заряжая конденсатор до определенной величины.

Считывание информации - процесс длительный, включающий подготовительные операции. Вначале специальная схема предзаряда сообщает потенциал (опорное напряжение) обеим разрядным шинам. Схема также модифицирует ячейку, восстанавливая информационную емкость после чтения (откуда и название режима работы - чтение с модификацией)).

Далее для доступа к микросхеме памяти из контроллера ОЗУ поступают сигналы управления, которые переводят числовую шину в активное состояние. При этом на числовой шине ячейки также повышается потенциал, транзистор открывается и замыкает цепь: корпус - числовая шина 1.

Если емкость заряжена, она разряжается на числовую шину, повышая ее потенциал. Между числовыми шинами 1 и 2 возникает напряжение. Циркулирующий при этом ток создает на выходной шине заряд (единица). Если емкость не была заряжена, то на выходе формируется ток противоположного направления и с шины данных снимается ноль.

Процесс записи обратен считыванию.

Временных характеристик динамической памяти очень много, но важнейших - три:

 время предзаряда памяти - представляет собой задержку, связанную с предварительным зарядом разрядных шин опорным напряжением;

 время доступа к памяти - активизация числовой шины, в результате чего на выходную шину данных памяти выкладывается информация;

 время цикла - состоит из задержек времени предзаряда и доступа.

Время задержки вывода данных DRAM измеряется величинами от десятков до сотен наносекунд.

Когда процессор "гуляет"

Систему притормаживают не только задержки в «недрах» памяти. Любое обращение к ОЗУ сопровождается передачей в контроллер памяти большой группы сигналов, осложняющих схемотехнику. Громоздкость сигнального аппарата повышает латентность подготовительного периода цикла обмена данными. О чем идет речь?

В DRAM каждую ячейку можно отыскать по ее адресным координатам, оформленным в строки и столбцы (рис. 2).

Все ячейки выводятся на общую числовую шину. Выбор соответствующего адреса строки и столбца позволяет определить место ячейки. Содержимое нескольких ячеек, объединенных на выходе, образует информационную группу - байт, или слово, и следует на шину данных памяти. Разрядность внешней шины данных памяти позволяет повысить ее пропускную способность. Вместе с тем рост быстродействия памяти не возымеет никакого эффекта, если она не способна работать с малыми временными задержками.

Адрес памяти содержит сведения для выбора: байта, банка, строки и столбца. Он поступает в один из портов контроллера ОЗУ, трансформируется в два адреса - строки и столбца, которые по шине MA попадают в DRAM (рис. 3) с некоторым промежутком времени (ΔT1 на рис. 4).

Контроллер памяти оснащен портом для обмена данными с процессором и еще одним портом - для обмена с устройствами ввода вывода на системной шине. В современных чипсетах первый порт называется «северным», а другой «южным». С таким же успехом порт AGP может быть назван «западным»… Поскольку «соискателей» для обмена много, на входе подсистемы имеется арбитр. Этот «строгий привратник» подключает к памяти устройства в соответствии с приоритетами. На этот процесс также уходит время.

Шина между процессором и контроллером ОЗУ - FSB (Front Side Bus) - тактируется системными синхроимпульсами. При отсутствии данных в кэш, доступ к ОЗУ можно представить следующим образом.

За время первого и второго тактов синхронизации с шины FSB в контроллер ОЗУ направляются управляющие и адресные сигналы (# у сигнала свидетельствует о том, что его активный уровень - низкий). Сигналы анализируются и управляют логикой ОЗУ.

Два-три (в зависимости от качества DRAM) синхроимпульса расходуется на запуск схемы дешифрации и выбор соответствующей строки.

Каждый из элементов адресной группы стробируется импульсами сигналов управления RAS# (Row AddressStrobe)и CAS# (Column Address Strobe) (рис. 4 ).

При доступе к шинам строк активизируется числовая шина, и все ячейки в данной строке считываются. На разрядные шины поступают соответствующие потенциалы от конденсаторов. На активизацию шин столбцов, подключение разрядных шин к буферу данных и извлечение из ячейки памяти данных также требуется два-три такта синхронизации. Еще один такт уходит на доставку данных в буфер данных DRAM. По такту затрачивается на доставку данных в контроллер ОЗУ и далее - в процессор. Таким образом, за один цикл обращения к памяти система генерирует, в общей сложности 9–11 тактов синхронизации. При считывании данных следует учесть еще два такта, расходуемых на восстановление заряда ячеек.

На протяжении долгого времени разработчиками создавались различные типы памяти. Они обладали разными характеристиками, в них были использованы разные технические решения. Основной движущей силой развития памяти было развитие компьютеров и центральных процессоров. Постоянно требовалось увеличение быстродействия и объёма оперативной памяти.

Страничная память

Страничная память (англ. page mode DRAM, PM DRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Память такого типа выпускалась в начале 1990-х годов, но с ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.

Быстрая страничная память

Быстрая страничная память (англ. fast page mode DRAM, FPM DRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела, а увеличение скорости работы достигалось путём повышенной нагрузки на аппаратную часть памяти. Данный тип памяти в основном применялся для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно.

EDO DRAM -- память с усовершенствованным выходом

C появлением процессоров Intel Pentium память FPM DRAM оказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ. extended data out DRAM, EDO DRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорами Intel Pentium и выше. Её производительность оказалась на 10--15 % выше по сравнению с памятью типа FPM DRAM. Её рабочая частота была 40 и 50 МГц, соответственно, время полного доступа -- 60 и 50 нс, а время рабочего цикла -- 25 и 20 нс. Эта память содержит регистр-защелку (англ. data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.

SDRAM -- синхронная DRAM

В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDO DRAM стала заметно падать. Ей на смену пришла синхронная память (англ. synchronous DRAM, SDRAM). Новыми особенностями этого типа памяти являлись использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше).

Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка -- несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа. Рабочие частоты этого типа памяти могли равняться 66, 100 или 133 МГц, время полного доступа -- 40 и 30 нс, а время рабочего цикла -- 10 и 7,5 нс.

С этим типом памяти применялась технология Virtual Channel Memory (VCM). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, была совместима с существующими SDRAM, что позволяло делать апгрейд системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.

Enhanced SDRAM (ESDRAM)

Для преодоления некоторых проблем с задержкой сигнала, присущих стандартной DRAM-памяти, было решено встроить небольшое количество SRAM в чип, то есть создать на чипе кеш.

ESDRAM -- это, по существу, SDRAM с небольшим количеством SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кеш-памяти, SRAM-кеш предназначен для хранения и выборки наиболее часто используемых данных. Отсюда и уменьшение времени доступа к данным медленной DRAM.

Одним из таких решений являлась ESDRAM от Ramtron International Corporation.

Пакетная EDO RAM

Пакетная память EDO RAM (англ. burst extended data output DRAM, BEDO DRAM) стала дешёвой альтернативой памяти типа SDRAM. Основанная на памяти EDO DRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типа SDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.

Специальный тип оперативной памяти -- Video RAM (VRAM) -- был разработан на основе памяти типа SDRAM для использования в видеоплатах. Он позволял обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации изображений высокого качества. На основе памяти типа VRAM, появилась спецификация памяти типа Windows RAM (WRAM), иногда её ошибочно связывают с операционными системами семейства Windows. Её производительность стала на 25 % выше, чем у оригинальной памяти типа SDRAM, благодаря некоторым техническим изменениям.

По сравнению с обычной памятью типа SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.

У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.

Память DDR SDRAM работает на частотах в 100, 133, 166 и 200 МГц, её время полного доступа -- 30 и 22,5 нс, а время рабочего цикла -- 5, 3,75, 3 и 2,5 нс.

Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти обозначаются DDR200, DDR266, DDR333, DDR400.

Direct RDRAM или Direct Rambus DRAM

Тип памяти RDRAM является разработкой компании Rambus. Высокое быстродействие этой памяти достигается рядом особенностей, не встречающихся в других типах памяти. Первоначальная очень высокая стоимость памяти RDRAM привела к тому, что производители мощных компьютеров предпочли менее производительную, зато более дешёвую память DDR SDRAM. Рабочие частоты памяти -- 400, 600 и 800 МГц, время полного доступа -- до 30 нс, время рабочего цикла -- до 2,5 нс.

Конструктивно новый тип оперативной памяти DDR2 SDRAM был выпущен в 2004 году. Основываясь на технологии DDR SDRAM, этот тип памяти за счёт технических изменений показывает более высокое быстродействие и предназначен для использования на современных компьютерах. Память может работать с тактовой частотой шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных соответственно будет 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти помимо стандартных частот выпускают и образцы, работающие на нестандартных (промежуточных) частотах. Они предназначены для использования в разогнанных системах, где требуется запас по частоте. Время полного доступа -- 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла -- от 5 до 1,67 нс.

Этот тип памяти основан на технологиях DDR2 SDRAM со вдвое увеличенной частотой передачи данных по шине памяти. Отличается пониженным энергопотреблением по сравнению с предшественниками. Частота полосы пропускания лежит в пределах от 800 до 2400 МГц (рекорд частоты -- более 3000 МГц), что обеспечивает большую пропускную способность по сравнению со всеми предшественниками.

Конструктивные исполнения памяти DRAM

Рис. 4. Различные корпуса DRAM. Сверху вниз: DIP, SIPP, SIMM (30-контактный), SIMM (72-контактный), DIMM (168-контактный), DIMM (184-контактный, DDR)

Рис.5.

Рис. 6. Модуль DDR2 в 204-контактном корпусе SO-DIMM

Память типа DRAM конструктивно выполняют и в виде отдельных микросхем в корпусах типа DIP, SOIC, BGA, и в виде модулей памяти типа: SIPP, SIMM, DIMM, RIMM.

Первоначально микросхемы памяти выпускались в корпусах типа DIP (к примеру, серия К565РУхх), далее они стали производиться в более технологичных для применения в модулях корпусах.

На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) -- небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.

Модули SIPP

Модули типа SIPP (Single In-line Pin Package) представляют собой прямоугольные платы с контактами в виде ряда маленьких штырьков. Этот тип конструктивного исполнения уже практически не используется, так как он далее был вытеснен модулями типа SIMM.

Модули SIMM

Модули типа SIMM (Single In-line Memory Module) представляют собой длинные прямоугольные платы с рядом контактных площадок вдоль одной из её сторон. Модули фиксируются в разъёме (сокете) подключения с помощью защёлок, путём установки платы под некоторым углом и нажатия на неё до приведения в вертикальное положение. Выпускались модули на 4, 8, 16, 32, 64, 128 Мбайт.

Наиболее распространены 30- и 72-контактные модули SIMM.

Модули DIMM

Модули типа DIMM (Dual In-line Memory Module) представляют собой длинные прямоугольные платы с рядами контактных площадок вдоль обеих её сторон, устанавливаемые в разъём подключения вертикально и фиксируемые по обоим торцам защёлками. Микросхемы памяти на них могут быть размещены как с одной, так и с обеих сторон платы.

Модули памяти типа SDRAM наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM -- в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM -- 240-контактных модулей.

Модули SO-DIMM

Для портативных и компактных устройств (материнских плат форм-фактора Mini-ITX, лэптопов, ноутбуков, таблетов и т. п.), а также принтеров, сетевой и телекоммуникационной техники и пр. широко применяются конструктивно уменьшенные модули DRAM (как SDRAM, так и DDR SDRAM) -- SO-DIMM (Small outline DIMM) -- аналоги модулей DIMM в компактном исполнении для экономии места.

Модули RIMM

Модули типа RIMM (Rambus In-line Memory Module) менее распространены, в них выпускается память типа RDRAM. Они представлены 168- и 184-контактными разновидностями, причём на материнской плате такие модули обязательно должны устанавливаться только в парах, в противном случае в пустые разъёмы устанавливаются специальные модули-заглушки (это связано с особенностями конструкции таких модулей). Также существуют 242-контактные PC1066 RDRAM модули RIMM 4200, не совместимые с 184-контактными разъёмами, и уменьшенная версия RIMM -- SO-RIMM, которые применяются в портативных устройствах.

Оперативные запоминающие устройства

Режим удвоенной скорости

Пакетный режим

Пакетный режим (Burst Mode) - режим, при котором на запрос по конкретному

адресу память возвращает пакет данных, хранящихся не только по этому адресу,

но и по нескольким последующим адресам.

Разрядность ячейки памяти современных ВМ обычно равна одному байту, в то

время как ширина шины данных, как правило, составляет четыре байта. Следова-

тельно, одно обращение к памяти требует последовательного доступа к четырем смеж-

ным ячейкам - пакету1. С учетом этого обстоятельства в ИМС памяти часто использу-

ется модификация страничного режима, носящая название группового или пакетного

режима. При его реализации адрес столбца заносится в ИМС только для первой ячей-

ки пакета, а переход к очередному столбцу производится уже внутри микросхемы.

Это позволяет для каждого пакета исключить три из четырех операций занесения

в ИМС адреса столбца и тем самым еще более сократить среднее время доступа.

Важным этапом в дальнейшем развитии технологии микросхем памяти стал ре-

жим DDR (Double Data Rate) - удвоенная скорость передачи данных. Сущность

метода заключается в передаче данных по обоим фронтам импульса синхрониза-

ции, то есть дважды за период. Таким образом, пропускная способность увеличи-

вается в те же два раза.

Помимо упомянутых используются и другие приемы повышения быстродей-

ствия ИМС памяти, такие как включение в состав микросхемы вспомогательной

кэш-памяти и независимые тракты данных, позволяющие однов

Большинство из применяемых в настоящее время типов микросхем оперативной

памяти не в состоянии сохранять данные без внешнего источника энергии, то есть

являются энергозависимыми (volatile memory). Широкое распространение таких

устройств связано с рядом их достоинств по сравнению с энергонезависимыми

типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотребле-

нием, более высоким быстродействием и невысокой себестоимостью хранения еди-

ницы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: ди-

намическую память (DRAM - Dynamic Random, Access Memory) и статическую

память (SRAM - Static Random Access Memory).

В статических ОЗУ запоминающий элемент может хранить записанную инфор-

мацию неограниченно долго (при наличии питающего напряжения). Запоминаю-

щий элемент динамического ОЗУ способен хранить информацию только в течение

достаточно короткого промежутка времени, после которого информацию нужно

восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и стати-



ческие, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой

триггер представляет собой схему с двумя устойчивыми состояниями, обычно со-

стоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзи-

сторами обеспечивает большую емкость микросхемы, а следовательно, меньшую

стоимость, однако у такой схемы большой ток утечки, когда информация просто

хранится. Также триггер на четырех транзисторах более чувствителен к воздей-

ствию внешних источников излучения, которые могут стать причиной потери ин-

формации. Наличие двух дополнительных транзисторов позволяет в какой-то мере

компенсировать упомянутые недостатки схемы на четырех транзисторах, но, глав-

ное - увеличить быстродействие памяти.

Запоминающий элемент динамической памяти значительно проще. Он состо-

ит из одного конденсатора и запирающего транзистора (рис. 5.8).

Наличие или отсутствие заряда в конденсаторе интерпретируется как 1 или О

соответственно. Простота схемы позволяет достичь высокой плотности размеще-

ния ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии

связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже

при хорошем диэлектрике с электрическим сопротивлением в несколько тераом

(1012 Ом), используемом при изготовлении элементарных конденсаторов ЗЭ, за-

ряд теряется достаточно быстро. Размеры у такого конденсатора микроскопичес-

кие, а емкость имеет порядок 10-15 Ф. При такой емкости на одном конденсаторе

накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ

динамической памяти составляет сотни или даже десятки миллисекунд, поэтому

заряд необходимо успеть восстановить в течение данного отрезка времени, иначе

хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ

называется регенерацией и осуществляется каждые 2-8 мс.

В различных типах ИМС динамической памяти нашли применение три основ-

ных метода регенерации:

Одним сигналом RAS (RОR - RAS Only Refresh);

Сигналом CAS, предваряющим сигнал RAS(CBR - CAS Before RAS);

Автоматическая регенерация (SR - Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM.

Loading...Loading...