Какой летчик первым преодолел сверхзвуковой барьер. Звуковой барьер Ударная волна от сверхзвукового самолета

Слышали ли вы громкий звук, напоминающий взрыв, когда над головой пролетает реактивный самолет? Этот звук появляется, когда самолет преодолевает звуковой барьер. А что такое звуковой барьер и почему самолет издает такой звук?

Как вам известно, звук перемещается с определенной скоростью. Скорость зависит от высоты. На уровне моря скорость звука — примерно 1220 километров в час, а на высоте 11000 метров — 1060 километров в час. Когда самолет летит на скоростях, близких к скорости звука, он подвергается определенным нагрузкам. Когда он летит на обычных (дозвуковых) скоростях, передняя часть самолета гонит перед собой волну давления. Эта волна распространяется со скоростью звука.

Волна давления возникает из-за накопления частиц воздуха по мере продвижения самолета. Волна движется быстрее, чем самолет, когда самолет летит на дозвуковых скоростях. И в результате оказывается, что воздух беспрепятственно проходит по поверхностям крыльев самолета.

А теперь давайте рассмотрим самолет, который летит со скоростью звука. Волна давления перед самолетом не появляется. Вместо этого происходит то, что волна давления образуется перед крылом (поскольку самолет и волна давления движутся с одинаковой скоростью).

Теперь происходит образование ударной волны, что вызывает большие нагрузки в крыле самолета. Выражение «звуковой барьер» появилось еще до того, как самолеты могли летать со скоростью звука — и считалось, что это выражение описывает нагрузки, которые самолет будет испытывать при этих скоростях. Это считалось «барьером».

Но скорость звука вовсе не является барьером! Инженеры и авиаконструкторы преодолели проблему новых нагрузок. И от старых взглядов у нас осталось лишь то, что удар вызывается ударной волной, когда самолет летит на сверхзвуковых скоростях.

Термин «звуковой барьер» неверно описывает условия, которые возникают при движении самолета с определенной скоростью. Можно полагать, что при достижении самолетом скорости звука появляется что-то вроде «барьера» — но ничего подобного не происходит!

Чтобы понять все это, рассмотрим самолет, летящий с небольшой, обычной скоростью. При движении самолета вперед впереди самолета образуется волна сжатия. Она образуется движущимся вперед самолетом, который спрессовывает частички воздуха.

Эта волна движется впереди самолета со скоростью звука. И ее скорость выше скорости самолета, который, как мы уже сказали, летит с небольшой скоростью. Двигаясь впереди самолета, эта волна заставляет воздушные потоки обтекать плоскости самолета.

Теперь представим, что самолет летит со скоростью звука. Впереди самолета не образуется волны сжатия, так как и самолет, и волны имеют одну скорость. Поэтому волна образуется впереди крыльев.

В результате появляется ударная волна, которая создает большие нагрузки на крылья самолета. До того, как самолеты достигли звукового барьера и превысили его, считали, что такие ударные волны и перегрузки создадут для самолета что-то вроде барьера — «звуковой барьер». Однако звукового барьера не было, так как авиационные инженеры разработали специальную конструкцию самолета для этого.

Кстати, сильный «удар», который мы слышим при прохождении самолетом «звукового барьера», и есть ударная волна, о которой мы уже говорили — при равной скорости самолета и волны сжатия.

14 октября 1947 года человечество преодолело очередной рубеж. Рубеж вполне объективный, выражающийся в конкретной физической величине — скорости звука в воздухе, которая в условиях земной атмосферы находится в зависимости от её температуры и давления в пределах 1100–1200 км/ч. Сверхзвуковая скорость покорилась американскому пилоту Чаку Йегеру (Charles Elwood «Chuck» Yeager) — молодому ветерану Второй мировой, обладавшему незаурядной отвагой и отменной фотогеничностью, благодаря чему он немедленно стал популярен у себя на родине так же, как спустя 14 лет — Юрий Гагарин .

А отвага для перехода через звуковой барьер действительно требовалась. Советский пилот Иван Федоров , повторивший достижение Йегера год спустя, в 1948 году, вспоминал тогдашние свои ощущения : «Перед полетом на преодоление звукового барьера стало очевидным, что гарантии выжить после него нет никакой. Никто не знал практически, что это такое и выдержит ли конструкция самолета напор стихии. Но об этом старались не думать».

Действительно, полной ясности относительно того, как себя поведет машина на сверхзвуковой скорости, не было. У авиаконструкторов были ещё свежи в памяти воспоминания о внезапной напасти 30-х годов, когда с ростом скоростей самолетов пришлось срочно решать проблему флаттера — автоколебаний, возникающих как в жестких конструкциях самолета, так и в его обшивке, в считанные минуты разрывающих самолет на части. Процесс развивался лавинообразно, стремительно, пилоты не успевали изменить режим полета, и машины рассыпались в воздухе на части. Довольно долго математики и конструкторы в различных странах бились над решением этой проблемы. В конце концов теорию явления создал тогда ещё молодой российский математик Мстислав Всеволодович Келдыш (1911–1978), впоследствии президент АН СССР. С помощью этой теории удалось найти способ навсегда избавиться от неприятного явления.

Вполне понятно, что столь же неприятных сюрпризов ожидали и от звукового барьера. Численное решение сложных дифференциальных уравнений аэродинамики в отсутствие мощных вычислительных машин было невозможно, и приходилось полагаться на «продувку» моделей в аэродинамических трубах. Но из качественных соображений было ясно, что при достижении скорости звука вблизи самолета возникает ударная волна. Наиболее ответственный момент — преодоление звукового барьера, когда скорость самолета сравнивается со скоростью звука. В этот момент разность давлений по разные стороны фронта волны быстро нарастает, и если момент продлится дольше мгновения, самолет может развалиться не хуже чем от флаттера. Порой при преодолении звукового барьера с недостаточным ускорением созданная самолетом ударная волна даже вышибает стекла из окон домов на земле под ним.

Отношение скорости самолета к скорости звука называют числом Маха (по имени знаменитого немецкого механика и философа Эрнста Маха). При прохождении звукового барьера пилоту кажется, что число М перескакивает через единицу скачкообразно: Чак Йегер увидел, как стрелка махометра скакнула с 0,98 на 1,02, после чего в кабине наступила «божественная» тишина — на самом деле, кажущаяся: просто уровень звукового давления в кабине самолета падает в несколько раз. Этот момент «очищения от звука» очень коварен, он стоил жизни многим испытателям. Но опасность развалиться для его самолета Х-1 была невелика.

Самолет Х-1 , изготовленный компанией Bell Aircraft в январе 1946 года, был чисто исследовательским летательным аппаратом, предназначенным для покорения звукового барьера и ни для чего более. Несмотря на то что машина была заказана министерством обороны, вместо оружия её нашпиговали научной аппаратурой, отслеживающей режимы работы узлов, приборов и механизмов. Х-1 походил на современную крылатую ракету. Имел один ракетный двигатель Reaction Motors тягой 2722 кГ. Максимальный взлетный вес — 6078 кг. Длина — 9,45 м, высота — 3,3 м, размах крыльев — 8,53 м. Максимальная скорость — на высоте 18290 м 2736 км/ч. Машина запускалась со стратегического бомбардировщика В-29 , а приземлялась на стальные «лыжи» на высохшем соляном озере.

Не менее впечатляют и « тактико-технические параметры» её пилота. Чак Йегер родился 13 февраля 1923 года. После школы пошел в летное училище, и после его окончания отправился воевать в Европу . Сбил один Мессершмит-109 . Сам был сбит в небе Франции , но его спасли партизаны. Как ни в чем не бывало вернулся на базу в Англию . Однако бдительная служба контрразведки, не поверив чудесному избавлению от плена, отстранила пилота от полетов и направила его в тыл. Честолюбивый Йегер добился приема у главнокомандующего союзными войсками в Европе генерала Эйзенхауэра, который Йегеру поверил. И не ошибся — молодой пилот за полгода, остававшиеся до окончания войны, совершил 64 боевых вылета, сбил 13 вражеских самолетов, причем 4 в одном бою. И вернулся на родину в звании капитана с прекрасным досье, в котором значилось, что он обладает феноменальной летной интуицией, невероятным хладнокровием и удивительной выдержкой в любой критической ситуации. Благодаря такой характеристике он попал в команду испытателей-сверхзвуковиков, которых отбирали и готовили столь же тщательно, как впоследствии — астронавтов.

Переименовав Х-1 в «Пленительную Гленис» (Glamorous Glennis) в честь своей жены, Йегер не единожды устанавливал на нем рекорды. В конце октября 1947 года пал прежний рекорд высоты — 21 372 м. В декабре 1953 года новая модификация машины — X-1A развила скорость 2,35 М — почти 2800 км/ч, а полгода спустя поднялась на высоту 27 430 м. А до того были испытания ряда запускавшихся в серию истребителей и обкатка нашего МиГ-15 , захваченного и переправленного в Америку во время корейской войны. Впоследствии Йегер командовал различными испытательными подразделениями ВВС как в США , так и на американских базах в Европе и Азии, принимал участие в боевых действиях во Вьетнаме , тренировал пилотов. В отставку он вышел в феврале 1975 года в звании бригадного генерала, налетав за время доблестной службы 10 тыс. часов, обкатав 180 различных сверхзвуковых моделей и собрав уникальную коллекцию орденов и медалей. В середине 80-х годов был снят фильм, основанный на биографии бравого парня, первым в мире покорившего звуковой барьер, и после этого Чак Йегер стал даже не героем, а общенациональной реликвией. В последний раз он сел за штурвал F-16 14 октября 1997 года и преодолел звуковой барьер на пятидесятую годовщину своего исторического полета. Было Йегеру тогда 74 года. В общем, как сказал поэт, гвозди бы делать из этих людей.

Таких людей немало и по другую сторону океана… Советские конструкторы начали примеряться к покорению звукового барьера одновременно с американскими. Но для них это было не самоцелью, а актом вполне прагматичным. Если Х-1 был сугубо исследовательской машиной, то у нас звуковой барьер штурмовали на прототипах истребителей, которые предполагалось запустить в серию для укомплектования ими частей ВВС.

В соревнование включились несколько конструкторских бюро — ОКБ Лавочкина , ОКБ Микояна и ОКБ Яковлева , — в которых параллельно разрабатывались самолеты со стреловидным крылом, что тогда было революционным конструктивным решением. К сверхзвуковому финишу они пришли в таком порядке: Ла-176 (1948), МиГ-15 (1949), Як-50 (1950). Однако там проблема решалась в довольно сложном контексте: военная машина должна обладать не только высокой скоростью, но и множеством иных качеств — маневренность, живучесть, минимальное время предполетной подготовки, мощное вооружение, внушительный боекомплект и т.д. и т.п. Следует отметить и то, что в советские времена на решение государственных приемочных комиссий зачастую влияли не только объективные факторы, но и субъективные моменты, связанные с политическими маневрами разработчиков. Вся эта совокупность обстоятельств привела к тому, что в серию был запущен истребитель МиГ-15 , который прекрасно показал себя на локальных аренах военных действий 50-х годов. Именно эту машину, захваченную в Корее, как было выше сказано, «объезжал» Чак Йегер.

В Ла-176 была применена рекордная по тем временам стреловидность крыла, равная 45 градусам. Турбореактивный двигатель ВК-1 обеспечивал тягу в 2700 кГ. Длина — 10,97 м, размах крыльев — 8,59 м, площадь крыла 18,26 кв.м. Взлетная масса — 4636 кг. Потолок — 15 000 м. Дальность полета — 1000 км. Вооружение — одна 37-мм пушка и две 23-мм. Машина была готова осенью 1948 года, в декабре начались её летные испытания в Крыму на военном аэродроме близ города Саки . Среди тех, кто руководил испытаниями, был и будущий академик Владимир Васильевич Струминский (1914–1998), пилотами экспериментального самолета были капитан Олег Соколовский и полковник Иван Федоров, получивший впоследствии звание Героя Советского Союза. Соколовский по нелепой случайности погиб во время четвертого полета, забыв закрыть фонарь кабины.

Звуковой барьер полковник Иван Федоров преодолел 26 декабря 1948 года. Поднявшись на высоту 10 тыс. метров, он отклонил ручку управления от себя и начал разгоняться на пикировании. «С большой высоты разгоняю свой 176-й, — вспоминал пилот . — Слышен нудный негромкий свист. Наращивая скорость, самолет мчится к земле. На шкале махометра стрелка с трехзначных цифр переходит на четырехзначные. Самолет дрожит, словно в лихорадке. И вдруг — тишина! Взят звуковой барьер. Последующая расшифровка осциллограмм показала, что число М перевалило за единицу». Произошло это на высоте 7 000 метров, где была зафиксирована скорость 1,02М.

В дальнейшем скорость пилотируемых самолетов продолжала неуклонно наращиваться за счет увеличения мощности двигателей, применения новых материалов и оптимизации аэродинамических параметров. Однако этот процесс не безграничен. С одной стороны, он тормозится соображениями рациональности, когда учитывается расход топлива, стоимость разработки, безопасность полета и прочие не праздные соображения. И даже в военной авиации, где деньги и безопасность пилота не столь уж и значимы, скорости наиболее «шустрых» машин находятся в диапазоне от 1,5М до 3М. Больше как будто бы не требуется. (Рекорд скорости для пилотируемых аппаратов с реактивными двигателями принадлежит американскому самолету-разведчику SR-71 и составляет 3,2М.)

С другой стороны, существует непреодолимый тепловой барьер: при определенной скорости нагревание корпуса машины трением о воздух происходит настолько быстро, что невозможно отведение тепла с его поверхности. Расчеты показывают, что при нормальном давлении это должно происходить на скорости порядка 10М.

Тем не менее предел в 10М все-таки был достигнут все на том же полигоне Эдвардс. Произошло это в 2005 году. Рекордсменом стал беспилотный ракетный самолет Х-43А, изготовленный в рамках 7-летней грандиозной программы Hiper-X по отработке технологий нового типа, призванных радикально изменить облик ракетно-космической техники будущего. Его стоимость составляет $230 млн. Рекорд был установлен на высоте 33 тыс. метров. В беспилотнике использована новая система разгона. Вначале отрабатывает традиционная твердотопливная ракета, с помощью которой Х-43А достигает скорости 7М, а затем включается двигатель нового типа — гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД, или скрамджет), в котором в качестве окислителя используется обычный атмосферный воздух, а топливом является газообразный водород (прямо-таки классическая схема неуправляемого взрыва).

В соответствии с программой были изготовлены три беспилотных модели, которые после выполнения задания были утоплены в океане. Следующий этап предполагает создание пилотируемых машин. После их испытания полученные результаты будут учтены при создании самых разнообразных «полезных» аппаратов. Помимо летательных аппаратов для нужд NASA будут создаваться гиперзвуковые военные машины — бомбардировщики, разведчики и транспортники. Boeing, которая принимает участие в программе Hiper-X , планирует к 2030–2040 годам создать гиперзвуковой авиалайнер на 250 пассажиров. Вполне понятно, что иллюминаторов, которые на таких скоростях ломают аэродинамику и не выдерживают теплового нагрева, в нем не будет. Вместо иллюминаторов предполагаются экраны с видеозаписью проплывающих облаков.

Сомневаться не приходится, этот вид транспорта будет востребован, поскольку чем дальше, тем больше дорожает время, вмещающее все больше и больше в единицу времени эмоций, заработанных долларов и прочих компонентов современной жизни. В связи с этим не приходится сомневаться и в том, что когда-нибудь люди превратятся в бабочек-однодневок: один день будет насыщен как вся нынешняя (скорее — уже вчерашняя) человеческая жизнь. И можно предположить, что кто-то или что-то реализует в отношении человечества программу Hiper-X .

Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?

С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом». Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, - он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны.

Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако, происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта с последующей конденсацией капелек воды из влажного воздуха. Собственно, конденсат вы и видите на фотках внизу...

Нажмите на рисунок, чтобы увеличить его.

(иногда не одна, в зависимости от формы тела). На фото видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели.

На фронте ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли мм), почти скачкообразно происходят кардинальные изменения свойств потока - его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (5 и выше Махов) температура газа достигает нескольких тысяч градусов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта).

Фронт ударной волны по мере удаления от аппарата постепенно принимает почти правильную коническую форму, перепад давления на нём уменьшается с увеличением расстояния от вершины конуса , и ударная волна превращается в звуковую. Угол между осью и образующей конуса связан с числом Маха соотношением:

Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью. Обычно сразу после «хлопка» наблюдатель может слышать гул двигателей самолёта, не слышный до прохождения ударной волны, поскольку самолёт двигается быстрее звуков, издаваемых им. Очень похожее наблюдение имеет место при дозвуковом полёте - самолёт летящий над наблюдателем на большой высоте (больше 1 км) не слышен, точнее слышим с опозданием: направление на источник звука не совпадает с направлением на видимый самолёт для наблюдателя с земли.

Волновой кризис

Волновой кризис - изменение характера обтекания летательного аппарата воздушным потоком при приближении скорости полёта к скорости звука , сопровождающееся, как правило, ухудшением аэродинамических характеристик аппарата - ростом лобового сопротивления , снижением подъёмной силы , появлением вибраций и пр.

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука . При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

«Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с еще большими скоростями, мы не сможем летать на них. На прошлой неделе я на своем „Мустанге“ спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трехстах метрах от земли я с трудом выровнял машину…» .

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).



Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад и нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй Мировой с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, почему на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные, как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

Исторические факты

  • Первым пилотом, достигшим сверхзвуковой скорости в управляемом полёте, стал американский лётчик-испытатель Чак Йегер на экспериментальном самолёте Bell X-1 (с прямым крылом и ракетным двигателем XLR-11) достигший в пологом пикировании скорости М=1.06. Это произошло 14 октября 1947 года .
  • В СССР звуковой барьер впервые был преодолён 26 декабря 1948 года Соколовским, а потом и Фёдоровым , в полётах со снижением на опытном истребителе Ла-176 .
  • Первым гражданским самолётом, преодолевшим звуковой барьер, стал пассажирский лайнер Douglas DC-8 . 21 августа 1961 г. он достиг скорости 1.012 М или 1262 км/ч в ходе управляемого пике с высоты 12496 м. Полёт предпринимался с целью собрать данные для проектирования новых передних кромок крыла.
  • 15 октября 1997 года , спустя 50 лет после преодоления звукового барьера на самолёте, англичанин Энди Грин преодолел звуковой барьер на автомобиле Thrust SSC .
  • 14 октября 2012 года Феликс Баумгартнер стал первым человеком, преодолевшим звуковой барьер без помощи какого-либо моторизированного транспортного средства, в свободном падении во время прыжка с высоты 39 километров. В свободном падении он достиг скорости 1342,8 километра в час.

См. также

  • Тепловой барьер (проблемы разработки гиперзвуковых летательных аппаратов)

Примечания

Ссылки

  • Теоретические и инженерные основы аэрокосмической техники .

Wikimedia Foundation . 2010 .

Смотреть что такое "Звуковой барьер" в других словарях:

    ЗВУКОВОЙ БАРЬЕР, причина трудностей в авиации при увеличении скорости полета свыше скорости звука (СВЕРХЗВУКОВАЯ СКОРОСТЬ). Приближаясь к скорости звука, самолет испытывает неожиданное увеличение сопротивления и потерю аэродинамической ПОДЪЕМНОЙ… … Научно-технический энциклопедический словарь

    Явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой… … Энциклопедия техники

    звуковой барьер - garso barjeras statusas T sritis fizika atitikmenys: angl. sonic barrier; sound barrier vok. Schallbarriere, f; Schallmauer, f rus. звуковой барьер, m pranc. barrière sonique, f; frontière sonique, f; mur de son, m … Fizikos terminų žodynas

    звуковой барьер - garso barjeras statusas T sritis Energetika apibrėžtis Staigus aerodinaminio pasipriešinimo padidėjimas, kai orlaivio greitis tampa garso greičiu (viršijama kritinė Macho skaičiaus vertė). Aiškinamas bangų krize dėl staiga padidėjusio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

15 октября 2012, 10:32


Австрийский спортсмен Феликс Баумгартнер совершил затяжной прыжок с парашютом из стратосферы с рекордной высоты. Его скорость в свободном падении превысила скорость звука и составила 1342,8 км в час, фиксированная высота - 39,45 тысячи метров. Об этом официально объявлено на итоговой конференции на территории бывшей военной базы Розуэлл (штат Нью-Мексико).
Стратостат Баумгартнера с гелием объемом 850 тысяч кубометров, сделанный из тончайшего материала, стартовал в 08:30 утра по времени Западного побережья США (19:30 мск), набор высоты занял около двух часов. Порядка 30 минут шли довольно волнительные приготовления к выходу из капсулы, замеры давления и проверка приборов.
Свободное падение, по словам специалистов, длилось 4 минуты и 20 секунд без раскрытого тормозного парашюта. Между тем организаторы рекорда заявляют, что все данные будут переданы австрийской стороне, после чего состоится окончательное фиксирование и сертификация. Речь идет о трех мировых достижениях: прыжок с самой высокой точки, продолжительности свободного падения и преодолении скорости звука. В любом случае Феликс Баумгартнер - первый в мире человек, преодолевший скорость звука, находясь вне техники, отмечает ИТАР-ТАСС. Свободное падение Баумгартнера продолжалось 4 минуты 20 секунд, но без стабилизирующего парашюта. В результате спортсмен едва не вошел в штопор и в течение первых 90 секунд полета не поддерживал радиосвязь с землей.
"На какое-то мгновение мне показалось, что я теряю сознание, - описал спортсмен свое состояние. - Однако раскрывать тормозной парашют я не стал, а попытался стабилизировать полет самостоятельно. При этом каждую секунду я отчетливо понимал, что со мной происходит". В итоге "погасить" вращение удалось. В противном случае, если бы штопор затянулся, стабилизирующий парашют раскрылся бы автоматически.
В какой момент удалось превысить в падении скорость звука, австриец сказать не может. "Я не имею об этом ни малейшего представления, так как был слишком занят тем, чтобы стабилизировать свое положение в воздухе", - признался он, добавив, что не слышал также никакого характерного хлопка, который обычно сопровождает преодоление звукового барьера самолетами. По словам Баумгартнера, "во время полета он практически ничего не чувствовал, не думал ни о каких рекордах". "Я думал лишь о том, как вернуться на Землю живым и увидеть семью, родителей, свою девушку, - сказал он. - Иногда человеку нужно подняться на такую высоту только для того, чтобы осознать, насколько он мал". "Я думал только о своей семье", - поделился переживаниями Феликс. За несколько секунд до прыжка его мыслью было: «Господи, не оставь меня!»
Самым опасным моментом скай-дайвер назвал выход из капсулы. "Это был самый волнительный момент, ты не чувствуешь воздух, не понимаешь физически, что происходит, при этом важно отрегулировать давление, чтобы не погибнуть, - отметил он. - Это самый неприятный момент. Ненавижу это состояние". А "самый красивый момент - осознание, что стоишь на "вершине мира", - поделился спортсмен.

Loading...Loading...